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1. Differential equations

1.1. Definition. An equation involving derivatives of a dependent variable with respect

to one or more independent variables and is called a differential equation.

The following are examples of differential equations.

(1) dy
dx

− 2x cos x = 0.

(2) x2
(

d2y
dx2

)3

+ y
(
dy
dx

)5
+ xy = 0.

(3) y − x dy
dx

=
[
1 +

(
dy
dx

)2]5/2
.

(4) d2x
dy2

+

[
1 +

(
dx
dy

)3
] 1

2

= 0.

(5) x ∂z
∂x

+ y ∂z
∂y

= z.

(6) ∂2z
∂x∂y

= ∂z
∂y
.

If a differential equation contains one dependent variable (or function) and one independent

variable, that is, if all the derivatives appearing have reference to the same single indepen-

dent variable, then the differential equation is called an ordinary differential equation. If

there are two or more independent variables, so that the derivatives are partial, then the

equation is called a partial differential equation. Thus, the differential equations (1) to (4)

above are ordinary differential equations and (5) and (6) are partial differential equations.

The order of a differential equation is the order of the highest differential coefficient which

appears in it. The degree of a differential equation is the highest degree of the highest order

derivative appearing in it, when all the derivatives are free from radicals and fractional

powers. For example, in the above the differential equation (1) is of first order and of first

degree; (2) is of second order and of third degree; (Observe that there is a fifth power term

in the equation however, it is the power of first order derivative). Equation (3) is of first

order and of tenth degree. Equation (4) is of second order and of second degree; (5) is of

first order and of first degree; and (6) is of second order and of first degree. Note that in

equation (3), to make the highest order differential dy
dx

independent of any rational power,

1
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we have to take the square of both the sides, which in turn, will give rise the highest power

10 of the differential coefficient dy
dx
.

Exact Differential Equations.

Let M and N be functions of x and y. A differential equation of the form

Mdx+Ndy = 0, (1.1.1)

is said to be exact if the expression on the left hand side of (1.1.1) can be obtained directly

by differentiating some function of x and y.

1.2. Theorem. The necessary and sufficient condition for the differential equation

Mdx+Ndy = 0 (1.2.1)

to be exact is that
∂M

∂y
=

∂N

∂x
. (1.2.2)

Proof. Necessity: Suppose that (1.2.1) is exact. So, Mdx + Ndy can be obtained

directly by differentiating some function f = f(x, y). Thus,

d[f(x, y)] = Mdx+Ndy ⇒ ∂f

∂x
dx+

∂f

∂y
dy = Mdx+Ndy.

So,

∂f

∂x
= M and

∂f

∂y
= N;

∂2f

∂y∂x
=

∂M

∂y
and

∂2f

∂x∂y
=

∂N

∂x
. (1.2.3)

Since, we assume the function to be many times continuously differentiable, (see Proposi-

tion ??), ∂2f
∂y∂x

= ∂2f
∂x∂y

. As a result, (1.2.3) gives ∂M
∂y

= ∂N
∂x

.

Sufficiency. Let P =
∫
Mdx. Then ∂P

∂x
= M. Hence ∂2P

∂y∂x
= ∂M

∂y
. This together with

(1.2.2) gives, ∂N
∂x

= ∂M
∂y

= ∂2P
∂y∂x

= ∂2P
∂x∂y

= ∂
∂x

(
∂P
∂y

)
. This, on integrating with respect to x,

gives,

N =
∂P

∂y
+ φ(y),

where φ is a function of y only. Thus we have,

Mdx+Ndy =
∂P

∂x
dx+

[
∂P

∂y
+ φ(y)

]
dy

=
∂P

∂x
dx+

∂P

∂y
dy + φ(y)dy

= dP+ d(F(y)) (where d(F(y)) = φ(y)dy)

= d[P+ F(y)],

which shows that Mdx+Ndy = 0, is an exact differential equation. �

A working rule for solving an exact differential equation
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Let us assume that the differential equation (1.1.1) is exact. The following algorithm

describes a working rule to solve the equation.

(1) Integrate M with respect to x regarding y as a constant.

(2) Integrate with respect to y, the terms in N not involving x.

(3) Add the two expressions obtained in the above two steps and equate the result to an

arbitrary constant. This gives the required solution.

1.3. Example. Solve (x2 − 2xy − y2)dx− (x+ y)2dy = 0.

Solution. Here M = x2 − 2xy − y2 and N = −(x+ y)2 = −x2 − 2xy − y2. Hence,

∂M

∂y
= −2x− 2y and

∂N

∂x
= −2x− 2y.

Thus ∂M
∂y

= ∂N
∂x

. Hence the given equation is an exact equation. IntegratingM with respect

to x treating y as constant, we obtain∫
Mdx =

∫
(x2 − 2xy − y2)dx =

x3

3
− x2y − y2x. (1.3.1)

Also, there is only one term −y2 in N that does not involve x which, on integration, gives∫
−y2dy = −y3

3
. (1.3.2)

Adding the right hand side terms of (1.3.1) and (1.3.2) and equating the result with a

constant gives the solution x3

3
−x2y−y2x− y3

3
= C, where C is constant of integration. �

1.4. Example. Solve xdx+ ydy + xdy−ydx
x2+y2

= 0.

Solution. First of all we have to simplify the given equation to express it in the form of

(1.1.1).

xdx+ ydy +
xdy − ydx

x2 + y2
= 0

⇒
[
x− y

x2 + y2

]
dx+

[
y +

x

x2 + y2

]
dy = 0.

Thus,

M = x− y

x2 + y2
and N = y +

x

x2 + y2

⇒ ∂M

∂y
=

y2 − x2

(x2 + y2)2
and

∂N

∂x
=

y2 − x2

(x2 + y2)2
.

Hence the given equation is exact. Now integrating M with respect to x regarding y as

constant, we get, ∫
Mdx =

∫ [
x− y

x2 + y2

]
dx

=

∫
xdx− y

∫
1

x2 + y2
dx
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=
x2

2
− y

1

y
tan−1

(
x

y

)
=

x2

2
− tan−1

(
x

y

)
. (1.4.1)

Also, N = y + x
x2+y2

. The only term in N not involving x is y, on integrating it with

respect to y gives y2

2
. Adding this term to the last term of (1.4.1) and equating the sum

to the constant gives the solution x2

2
− tan−1 x

y
+ y2

2
= C. That is, x2 − 2 tan−1 x

y
+ y2 = C,

where C is arbitrary constant. �

1.5. Example. Solve (y2exy
2
+ 4x3)dx+ (2xyexy

2 − 3y2)dy = 0.

Solution. Here M = y2exy
2
+ 4x3 and N = 2xyexy

2 − 3y2. Therefore, we have ∂M
∂y

=

2yexy
2
+ y22xyexy

2
= ∂N

∂x
, ensuring that the given equation is exact. Integrating M with

respect to x treating y as constant, we obtain∫
Mdx =

∫
(y2exy

2

+ 4x3)dx = y2
1

y2
exy

2

+ x4 = exy
2

+ x4.

Also, −3y2 is the only term of N free from x whose integral is −y3. Hence the required

solution is exy
2
+ x4 − y3 = C, with constant C.

Alternative method. Note that the given equation can be written as

0 = (y2exy
2

+ 4x3)dx+ (2xyexy
2 − 3y2)dy

= y2exy
2

dx+ 4x3dx+ 2xyexy
2

dy − 3y2dy

= y2exy
2

dx+ 2xyexy
2

dy + 4x3dx− 3y2dy

= d(exy
2

) + d(x4)− d(y3),

which, on integration, gives

C = exy
2

+ x4 − y3,

the solution of the given equation. �

Differential Equations of Higher degree

2. Introduction

Usually dy
dx

is denoted by p in differential equations which involve dy
dx

in degree greater

than one. Thus the general form of a first order nthdegree differential equation is

pn + A1p
n−1 + A2p

n−2 + · · ·+ An−1p+ An = 0, (2.0.1)

where p = dy
dx

and A1, A2, . . . , An are functions of x and y. We discuss various methods to

solve such equations.



3. Solvable for p 5

3. Equations solvable for p

Splitting up the left hand side of (2.0.1) into n linear factors, we have,

[p− f1(x, y)][p− f2(x, y)] · · · [p− fn(x, y)] = 0.

Equating each factor to zero gives a differential equation of the first order and first degree

which can be easily solved by using various methods discussed in Chapter ??. Suppose the

solutions of these equations are given by

F1(x, y, C1) = 0, F2(x, y, C2) = 0, . . . , Fn(x, y, Cn) = 0. (3.0.1)

Then the solution of (2.0.1) can be written in the form

F1(x, y, C1)F2(x, y, C2) · · ·Fn(x, y, Cn) = 0. (3.0.2)

Here the arbitrary constants C1, C2, . . . , Cn have been replaced by a single arbitrary con-

stant C, as every particular solution obtained from (3.0.1) can be obtained from (3.0.2) by

assigning a particular value of C.

3.1. Example. Solve the following differential equations.

(p+ y + x)(xp+ x+ y)(p+ 2x) = 0.

Solution. Here we get p+ y + x = 0 or xp+ x+ y = 0 or p+ 2x = 0. If p+ y + x = 0,

then dy
dx

+ x+ y = 0. Let v = x+ y. Then,

dv

dx
− 1 + v = 0

⇒ dv

dx
= 1− v

⇒ dv

1− v
= dx

⇒ − log(1− v) = x+ C1

⇒ 1− v = e−x−C1 = Ce−x

⇒ 1− x− y − Ce−x = 0. (3.1.1)

If xp + x + y = 0, then x dy
dx

+ y = −x, that is, dy
dx

+ 1
x
y = −1, which is linear and its

integrating factor is e
∫

dx
x = elog x = x. And its solution is

y × I.F. =

∫
−1× I.F.dx+ C2

⇒ yx = −
∫

xdx+ C2

⇒ yx = −x2

2
+ C2

⇒ 2xy + x2 − C = 0, (C = 2C2). (3.1.2)

If p+ 2x = 0, then dy
dx

+ 2x = 0, that is, dy + 2xdx = 0. Hence,

y + x2 − C = 0. (3.1.3)
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From (3.1.1), (3.1.2) and (3.1.3), the required solution is

(1− x− y − Ce−x)(2xy + x2 − C)(y + x2 − C) = 0.

�

3.2. Example. Solve p2 − xy = y2 − px.

Solution. The given equation can be rewritten as

(p2 − y2) + (px− xy) = 0 ⇒ (p− y)(p+ y + x) = 0

⇒ p− y = 0 or p+ y + x = 0.

If p− y = 0, then

⇒dy

dx
− y = 0

⇒dy

y
= dx

⇒ log y = x+ logC

⇒ log
( y

C

)
= x

⇒y = Cex

⇒y − Cex = 0. (3.2.1)

If p + y + x = 0, then dy
dx

+ y = −x, which is linear in y and its integrating factor is

e
∫
dx = ex. Hence its solution is

yex = −
∫

xexdx+ C

⇒ yex = −(xex −
∫

exdx) + C

⇒ yex = −xex + ex + C

⇒ y = −x+ 1 + Ce−x

⇒ y + x− 1− Ce−x = 0. (3.2.2)

Hence from (3.2.1) and (3.2.2), the required solution is

(y − Cex)(y + x− 1− Ce−x) = 0.

�

3.3. Example. Solve p2 + 2py cotx = y2.

Solution. Given equation can be written as

p2 + (2y cotx)p− y2 = 0.

Solving this for p, we get,

p =
−2y cotx±

√
4y2 cot2 x+ 4y2

2
⇒ p = −y cotx± y cosecx
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⇒ p = y

(
− cos x± 1

sin x

)
⇒ p = y

(
− cos x+ 1

sin x

)
or p = y

(
− cosx− 1

sin x

)
⇒ p =

2y sin2 x
2

2 sin x
2
cos x

2

or p = −
2y cos2 x

2

2 sin x
2
cos x

2

⇒ p = y tan
x

2
or p = −y cot x

2
.

If p = y tan x
2
, then

dy

y
= tan x

2
dx

⇒ log y = 2 log
(
sec x

2

)
+ logC1

⇒ y = C1 sec
2 x

2

⇒ y cos2 x
2
= C1

⇒ y(1 + cos x) = 2C1 = C, (say)

⇒ y(1 + cos x)− C = 0.

If p = −y cot x
2
, then

dy

y
= − cot x

2
dx

⇒ log y = −2 log
(
sin x

2

)
+ logC2

⇒ y =
C2

sin2 x
2

⇒ y sin2 x
2
= C2

⇒ y(1− cosx) = 2C2 = C, (say)

⇒ y(1− cosx)− C = 0.

So, the required solution is (y(1 + cosx)− C)(y(1− cos x)− C) = 0. �

4. Equations solvable for y

This type of equation can be put in the form

y = f(x, p). (4.0.1)

Differentiating (4.0.1) with respect to x gives p = dy
dx

= φ
(
x, p, dp

dx

)
, which is a differential

equation involving two variables x and p and hence its solution will be of the form

F (x, p, C) = 0, (4.0.2)

where C is an arbitrary constant. We can now eliminate p from (4.0.1), (4.0.2) and obtain

the required solution. In case elimination of p is not possible, we may solve (4.0.1) and

(4.0.2) for x, y to obtain x = F1(p, C), y = F2(p, C) as the required solution, where p is

the parameter.
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4.1. Example. Solve y = 2px+ pn.

Solution. Differentiating with respect to x, we get,

dy

dx
= 2p+ 2x

dp

dx
+ npn−1 dp

dx

⇒ − p = (2x+ npn−1)
dp

dx

⇒ p
dx

dp
+ 2x+ npn−1 = 0

⇒ dx

dp
+

2

p
x = −npn−2,

which is linear in x and its integrating factor is

e
∫

2
p
dp = e2 log p = elog p

2

= p2.

Hence, its solution is

x× (I.F.) =

∫
−npn−2 × (I.F.)dp+ C

⇒ xp2 = −n

∫
pndp+ C

⇒ xp2 = −npn+1

n+ 1
+ C

⇒ x = −npn−1

n+ 1
+

C

p2
. (4.1.1)

Substituting this value of x in the given differential equation we get,

y =
−2pnpn−1

n+ 1
+

2pC

p2
+ pn

⇒ y =
2C

p
− n− 1

n+ 1
pn. (4.1.2)

The required solution is obtained by eliminating p from (4.1.1) and (4.1.2). �

4.2. Example. Solve y = sin p− p cos p.

Solution. Differentiating the given equation with respect to x we get,

p =
dy

dx
= (cos p− cos p+ p sin p)

dp

dx
⇒ sin p dp = dx

⇒ − cos p = x+ C1

⇒ cos p = C − x, where C = −C1.

From the given equation we get,

p cos p = sin p− y
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⇒ p =

√
1− cos2 p− y

cos p

⇒ cos−1(C − x) =

√
1− (C − x)2 − y

C − x
(as cos p = C − x)

⇒ C − x = cos

[√
1− (C − x)2 − y

C − x

]
,

which is the required solution. �

4.3. Example. Solve y = yp2 + 2px.

Solution. The given equation can be rewritten as

y(1− p2) = 2px or y =
2px

1− p2
. (4.3.1)

Differentiating this with respect to x we get,

p =
(1− p2)(2p+ 2x(dp/dx))− 2px(−2p)(dp/dx)

(1− p2)2

⇒ p(1− p2)2 = 2p(1− p2) + [2x(1− p2) + 4p2x]
dp

dx

⇒ p(1− p2)(1− p2 − 2) = 2x(1− p2 + 2p2)
dp

dx

⇒ − p(1− p2)(1 + p2) = 2x(1 + p2)
dp

dx

⇒ p(p2 − 1) = 2x
dp

dx

⇒ 2dp

p(p2 − 1)
=

dx

x

⇒
[

1

p− 1
+

1

p+ 1
− 2

p

]
dp =

dx

x

⇒ log(p− 1) + log(p+ 1)− 2 log p = log x+ logC

⇒ p2 − 1

p2
= Cx

⇒ p2 − 1 = p2Cx

⇒ p2(1− Cx) = 1

⇒ p2 =
1

1− Cx

⇒ p =
1√

1− Cx
.

Substituting this value of p in (4.3.1), we get,

y =
2x/

√
1− Cx

1− 1
1−Cx

=
2x

√
1− Cx

−Cx

⇒ 2x
√
1− Cx+ Cxy = 0,



10

which is the required solution. �

5. Clairaut’s equation

The equation

y = px+ f(p) (5.0.1)

is known as Clairaut’s equation. To solve it, we differentiate it with respect to x and get,

p = p+ x
dp

dx
+ f ′(p)

dp

dx

⇒ [x+ f ′(p)]
dp

dx
= 0

⇒ dp

dx
= 0 (hence p = C, a constant) (5.0.2)

or

x+ f ′(p) = 0. (5.0.3)

Now eliminating p from (5.0.1) and (5.0.2) gives

y = Cx+ f(C), (5.0.4)

as a solution of (5.0.1). Hence the solution of the Clairaut’s equation is obtained on

replacing p by a constant C. If we eliminate p between (5.0.1) and (5.0.3), we get a solution

which does not contain any arbitrary constant and is not a particular case of (5.0.4). This

type of solution is known as singular solution. Some equations can be reduced to Clairaut’s

form by a suitable substitution.

5.1. Example. Solve y2 − 2pxy + p2(x2 − 1) = m2.

Solution. The given equation can be written as

(y − px)2 = m2 + p2 ⇒ y − px = ±
√
m2 + p2 ⇒ y = px±

√
m2 + p2,

which is in Clairaut’s form. Hence by substituting p = C, in the given equation we get the

required solution as y2 − 2Cxy + C2(x2 − 1) = m2. �

5.2. Example. Solve sin px cos y = cos px sin y + p.

Solution. The given equation can be written as

sin px cos y − cos px sin y = p ⇒ sin(px− y) = p

⇒ px− y = sin−1 p

⇒ y = px− sin−1 p,

which is in Clairaut’s form. Hence by substituting p = C, in the given equation we get the

required solution as sinCx cos y = cosCx sin y + C. �

5.3. Example. Solve xyp2 − (x2 + y2 − 1)p+ xy = 0.
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Solution. Let x2 = u and y2 = v, that is, x =
√
u and y =

√
v. Hence dx = 1

2
u−1/2du

and dy = 1
2
v−1/2dv. This gives p = dy

dx
=

√
u√
v
dv
du
. Substituting these values in the given

equation we get,

√
uv

u

v

(
dv

du

)2

− (u+ v − 1)

√
u

v

dv

du
+
√
uv = 0

⇒ u

(
dv

du

)2

− (u+ v − 1)
dv

du
+ v = 0

⇒ uP 2 − (u+ v − 1)P + v = 0, where P =
dv

du
⇒ u(P 2 − P )− v(P − 1) + P = 0

⇒ v(P − 1) = uP (P − 1) + P

⇒ v = Pu+
P

P − 1
, (5.3.1)

which is in Clairaut’s form. Hence by substituting P = C, in (5.3.1), we get the solution as

v = Cu+ C
C−1

. Now substituting back the values of u and v, we get the required solution

y2 = Cx2 + C
C−1

. �

5.4. Example. Solve y2(y − px) = x4p2.

Solution. Let x = 1
u
, y = 1

v
. Then dx = −1

u2 du, dy = −1
v2
dv, p = dy

dx
= u2

v2
dv
du
. Substituting

these values in the given equation we get,

1

v2

[
1

v
− u2

v2
dv

du

1

u

]
=

1

u4

u4

v4

(
dv

du

)2

⇒ 1

v3
− u

v4
dv

du
=

1

v4

(
dv

du

)2

⇒ v − u
dv

du
=

(
dv

du

)2

⇒ v = Pu+ P 2 where P =
dv

du
,

which is in Clairaut’s form and so its solution is v = Cu + C2. After substituting the

values of u and v back, the solution becomes C2xy + Cy − x = 0. �

5.5. Example. Solve e2x(p− 1) + p3e2ye−x = 0.

Solution. Let ex = u and ey = v. Then exdx = du and eydy = dv. Hence ey

ex
dy
dx

= dv
du
,

i.e., p = u
v
dv
du
. Substituting these values in the given equation, we get,

u2

[
u

v

dv

du
− 1

]
+

[
u

v

dv

du

]3
v2

u
= 0

⇒ u3

v

dv

du
− u2 +

u2

v

(
dv

du

)3

= 0

⇒ u
dv

du
− v +

(
dv

du

)3

= 0
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⇒ v = Pu+ P 3, where P =
dv

du
,

which is in Clairaut’s form. Its solution is v = Cu+ C3 or ey = Cex + C3. �

6. Trajectories of a family of curves

A curve that cuts every member of a given family of curves according to some given

law is called trajectory of the given family of curves. Here we shall consider only the case

when each trajectory cuts every member of the given family at a constant angle. If the

constant angle is a right angle, then the trajectory is called an orthogonal trajectory

6.1. Theorem. Obtain orthogonal trajectories of the family of curves

f(x, y, C) = 0 at a constant angle.

Proof. Suppose that the trajectories cut every member of the

family

f(x, y, C) = 0 (6.1.1)

at a constant angle α. Differentiating (6.1.1) with respect to x and eliminating C between

equation (6.1.1) and its derivative, we get the differential equation of the given family. Let

it be

φ

(
x, y,

dy

dx

)
= 0. (6.1.2)

Let (X,Y ) be the current coordinates of any point on the required trajectory. Then the

slope of its tangent at this point is dY
dX

. At a point of intersection of any member of family

(6.1.2), with the trajectory, we have,

x = X, y = Y (6.1.3)

and

tanα =
dy/dx− dY/dX

1 + (dy/dx)(dY/dX)
.

Hence,
dy

dx
=

dY/dX + tanα

1− tanα(dY/dX)
. (6.1.4)

From (6.1.2), (6.1.3) and (6.1.4), x, y and dy
dx

can be eliminated and we get a relation

φ

(
X, Y,

dY/dX + tanα

1− tanα(dY/dX)

)
= 0, (6.1.5)

which is the differential equation of the required family of trajectories. Solving (6.1.5), we

shall obtain the cartesian equation of the family of trajectories.

�

6.2. Orthogonal Trajectories (Cartesian coordinates): Suppose that the trajectories

cut every member of the family (6.1.1) at the constant angle π
2
. Hence the tangents to

both of these should be perpendicular to each other, i.e., in other words,

dy

dx

dY

dX
= −1 or

dy

dx
= −dX

dY
.
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Hence the differential equation of the family of the orthogonal trajectories is φ(X, Y,−dX
dY

) =

0. In usual notations, we see that the differential equation of the family of orthogonal tra-

jectories of the given family of φ(x, y, dy
dx
) = 0 is φ(x, y,−dx

dy
) = 0, so that it is obtained on

replacing dy
dx

by −dx
dy
.

6.3. Example. Find the orthogonal trajectories of the semi-cubical parabolas ay2 = x3,

where a is the variable parameter.

Solution. Differentiating the given equation with respect to x, we get

2ay
dy

dx
= 3x2 ⇒ 2ay2

dy

dx
= 3x2y ⇒ 2x3 dy

dx
= 3x2y ⇒ 2x

dy

dx
= 3y, (6.3.1)

which is the differential equation of the given family. Putting −dx
dy

in place of dy
dx

in (6.3.1),

we get,

2x(−dx

dy
) = 3y,⇒ 2xdx+ 3ydy = 0 ⇒ x2 +

3

2
y2 = C,

which the equation of the family of the orthogonal trajectories of the given semi-cubical

parabolas. �
Note: The following example deals with the asymptote. The topic is presently out of the

scope of this text book. If the students have not developed the theory of asymptotes and

the curve tracing, this example may safely, skipped.

6.4. Example. Find the orthogonal trajectories of family of parabolas

y2 = 4a(x+ a), (6.4.1)

where a is the parameter.

Solution. Differentiating (6.4.1) with respect to x, we have

2y
dy

dx
= 4a.

Putting this value in (6.4.1), we get,

y2 = 2y
dy

dx

[
x+

y

2

dy

dx

]
⇒ y = 2x

dy

dx
+ y

(
dy

dx

)2

, (6.4.2)

which is the differential equation of the given family of parabolas. Putting dy
dx

= −dx
dy

in

(6.4.2), we get the following differential equation of the required orthogonal trajectories of

the given family.

y = −2x
dx

dy
+ y

(
−dx

dy

)2

⇒ y

(
dy

dx

)2

+ 2x
dy

dx
− y = 0,

which is same as the differential equation (6.4.2) of the given family of parabolas. Hence

the given family (6.4.1) is self orthogonal. That is, the orthogonal trajectories of the system

belong to the system itself. Hence the required equation of the orthogonal trajectories of

the given family is y2 = 4C(x+ C), where C is the parameter. �
♣♣♣♣♣♣♣♣


